Additions

UCLA Researches Modulars

Posted on

Below is an article by Nicole Hemsoth from HPCwire.  A full version of this article can be found here

Purdue University made waves last year with its selection of HP’s POD containerized datacenter, which was hauled in to help them cope with a power inefficiencies stemming from an existing brick and mortar datacenter on campus.

The university set the proof point for cost and efficiency of modular datacenters, with their associate VP of Academic Technologies, John Campbell claiming that for 60% of the cost of a collocation facility the university could install a POD.

The selling point for containerized datacenters in general is that they come fully configured (although customizations can be made) with all the cables, power, cooling and racks in place and ready to roll. For Purdue, the savings mounted in the arenas of colo leasing, cutting back on staff to man datacenters, extension of on-campus networks, reduced power costs—which came, in part, because of the university’s own power plant.

UCLA announced this week that it has climbed aboard the containerized datacenter bandwagon with its head of academic technology services and managing director for the Institute of Digital Research and Education, Bill Labate, extolling the benefits of containerized HPC.

Labate’s group is responsible for providing university research cyberinfrastructure via its shared cluster system, which allows researchers who want to build their own clusters to instead buy compute nodes that Labate’s team integrates into the shared cluster. This allows the team to make the cycles available for over 170 research projects, from particle physics to genomcis and beyond.

As the need for cycles grew steadily, Labate saw a need for new equipment. He said that they had an existing datacenter that was a target for retrofitting, but when the team examined the possibility, it was clear there would be power and cooling limitations even though the space itself would have allowed room for growth. Labate’s team was able to secure $4.4 million to retrofit the existing data center, but when they received their final estimate for $7.2 million for the project, the shortfall led Labate down a different path.

Since it was not possible to scale down the potential retrofitted datacenter to remain within budget constraints, the possibilities of modular datacenters entered the picture. Labate said that to scale down to the level needed to suit the allotted funding would not have served even intermediate needs. Furthermore, since the goal of this undertaking was to enhance growth potential for the shared cluster resources, the retrofit would have been a waste of effort and money.

Labate approached UC San Diego for opinions about their experiences with a Sun-Oracle Black Box containerized solution, but found that they faced challenges with the U-shaped layout.  UCSD told him that one thing they did not like was that the Black Box required specialized equipment and brought logistical challenges when it came to replacing and maintaining hardware since entire sections needed to be pulled out for fixes. This would not suit UCLA’s needs since, again, their system of buying new hardware was based on price-performance options among vendors, thus requiring flexibility to swap components based on what individual vendors offered. Besides, the Black Box solution was only a 20-foot container, and Labate knew that he needed to be able to power more cycles than the smaller Sun-Oracle solution could provide.

Labate’s team eventually settled on HP due to its high density, which was a good fit for what they were trying to accomplish in terms of providing as many cycles as possible. Other vendors they evaluated offered attractive density but Labate said there was not enough flexibility–that they needed to be able to grow with solutions that weren’t specialized for a particular container environment.

Before choosing the high-density, 40×8 feet POD container from HP, the team also looked at options from Dell, Rackable and as noted previously, the Sun-Oracle Black Box, which Labate says was the first to be struck from the list due to the size and shape limitations. He did not go into detail about the reasons behind abandoning the Dell and Rackable solutions, other than to say that for their specific needs, density was the deciding factor. Still, he noted that there were many similarities between the HP, Dell, IBM, and Rackable solutions—the choice simply came down to price, performance, flexibility of equipment solutions, and density.

The site preparations for the container began in October 2010 and moved swiftly until ending in mid-April of 2011. This entailed extending the university’s existing chilled water, power systems and pumps, fiber networks and laying the solid foundation required to support 110,00 pounds of steel and equipment.

Many modular datacenter makers emphasize the quick installation and set-up of their containers, claiming that it can be humming away in a few short weeks. As Labate says, however, anyone who knows anything about datacenters knows that you “can’t just plunk down a datacenter in your backyard and hook into your garden hose.” All told, from site prep to shared cluster bootup the team was looking at several months.

The shared cluster is distributed across campus with one building housing around 300 nodes, another with roughly 500 and now the POD, which packs in over 1500 nodes. His team ran a wide area InfiniBand network throughout, pulling all the nodes onto the same fabric for efficient management. They connected the Ethernet network for storage  traffic, creating what he describes as a “geographic spread out single cluster.”

The team chose to keep the storage resources outside of the POD, in part to protect the valuable applications and results of long runs, but also because the POD has been optimized for compute nodes according to his team’s purpose to deliver shared cluster resources as if it was a single system. He emphasized repeatedly that their needs are specific—they wanted to be able to maximize the number of cycles available for university research.

When asked about usability or performance tradeoffs, Labate was adamant that containers are more efficient and perform for their needs, which again, are focused on providing more compute for the shared HPC cluster. He said that in many ways, the container streamlines their HPC operations by shedding the maintenance and efficiency hassles of brick and mortar. As he noted, “there are no other people in the POD, in fact, we limit our time in there since we want to keep it buttoned up as tight as possible. It’s been freeing, no operators in the pod, no need for anyone to sit in there and monitor—it’s all automated with all the tools we need for monitoring, powering on and off and so forth.”

According to Labate, there were no power and energy consumption problems with their use of POD. He said that compared to one of their brick and mortar datacenters which was operating at 1.5 PUE, the POD was running a steady 1.17 PUE. He claims that this translates into roughly a $200,000 difference in power costs, which represented a secondary but very important consideration as they looked at the POD capabilities.

Despite the lack of wide user adoption of modular datacenters, it was nearly impossible to get Labate to remark on any drawbacks to such solutions. He said that outside of the obvious negative factors, which include working inside small boxes with 36 raging blowers and tight quarters (which his team overcomes by saving fixes inside for once-weekly missions) and the aesthetic problem of having an giant, ugly shipping container fitting in with an artful sense of campus uniformity (an issue he said gave the campus aesthetics folk a few gripes) he can’t imagine traditional datacenters to address growth ever again.

When pressed about what he might warn others about when considering such solutions, Labate said environmental conditions were critical. First, in terms of making sure it is possible to locate the container close to needed power and cooling resources. Also, in terms of actually environment—he said that during a recent conversation with someone in an snow-bound region, he suggested that to avoid preventing access to the container they might need to consider building enclosures or renting indoor space.

Snow might not be a problem for UCLA, but earthquakes certainly are. Labate said this is another important distinction between brick and mortar and containers—while he notes he hasn’t researched his hunch, these massive, solid steel, windowless shipping containers were far likely more structurally sound than any existing traditional datacenter on his campus. Let’s hope he never gets a chance to prove that theory.

Advertisements

Insulation- the Green Way

Posted on

Prevost Construction is a proud customer of a great construction magazine,  Qualified Remodeler. This is where we get a lot of tricks of the trade, especially in the Go Green department.
Below, find a great article that identifies the popular types of go green insulation. To view the homepage and to see a complete version of this article, please click on the following link: www.qualifiedremodeler.com 
Green Product Spotlight: Insulation

Johns Manville’s formaldehyde-free fiberglass building insulation offers superior thermal and acoustical performance while improving indoor air quality. Products from Johns Manville’s complete line of formaldehyde-free fiberglass building insulation have qualified for SCS Indoor Advantage Gold + Formaldehyde Free certification from Scientific Certification Systems.
Johns Manville. Type #41 E-Inquiry Form.

fiberAmerica’s Green Seal cellulose fiber insulation product line includes offerings with all Class 1, Type A building materials that are best fit for attic, sidewall and ceiling applications. Made from recycled newspaper, these products are treated with non-toxic, naturally occurring fire retardant minerals and allow moisture to dissipate through the material, thereby preventing mold.
fiberAmerica. Type #42 E-Inquiry Form.

GreenFiber natural fiber blow-in insulation is made from 85 percent recycled-paper fiber specially treated for flame resistance. This natural fiber insulation provides outstanding resistance to heat flow for thermal applications and noise suppression for acoustical treatments.
GreenFiber. Type #43 E-Inquiry Form.

SAFETOUCH Fiberglass-Free Insulation, a product from Dow Building Solutions, is environmentally friendly and incorporates technological developments to promote an indoor environment that is comfortable, healthy and energy-efficient. SAFETOUCH insulation is manufactured from polyester fiber, a percentage of which is derived from post-consumer recycled materials. The product is safe to touch and easy to install.
Dow Building Solutions. Type #44 E-Inquiry Form.

UltraTouch Natural Cotton Fiber Insulation, manufactured by Bonded Logic Inc., is comprised of post-consumer recycled cotton fibers sourced from denim. The UltraTouch line of batt insulation offers R-8 to R-30 thermal values. UltraTouch contains no chemical irritants or formaldehyde.
Bonded Logic Inc. Type #45 E-Inquiry Form.

Sustainable Insulation from CertainTeed is a new fiberglass insulation product meeting the strictest California indoor air quality requirements. The product, which has a low-impact manufacturing process, incorporates recycled materials and a bio-based organic binder. It contains no phenol formaldehyde, harsh acrylics or dyes.
CertainTeed Corp. Type #46 E-Inquiry Form.

Aloha, My Happy West Coast Friends

Posted on

Although Prevost Construction works primarily on the East Coast, below is an article on Modular Buildings in the West Coast! It explains the GO GREEN benefits of modular buildings. Happy reading on this sun filled Friday afternoon:

Deconstruct construction

ZETA Communities helps rebuild the building industry
By Seth Sandronsky
More stories by this author…

This article was published on 07.21.11.

ZETA Communities employees at work at their McClellan Business Park headquarters.
Green Days is on the lookout for innovative sustainable projects throughout the Sacramento region. Turn us on atsactonewstips@newsreview.com

What is ZETA Communities doing at Sacramento’s McClellan Business Park?

There, this San Francisco-based company is building sustainable, modular, “net-zero energy” residential and commercial structures that actually produce as much energy as they consume.

ZETA, who formed in late 2007, a year later received an investment of $5 million from North Bridge Venture Partners, just as the stock market plunged nearly 800 points when the housing bubble burst. While Wall Street crashed, opportunity blossomed for those offering ecologically friendly building solutions for the housing industry, according to Shilpa Sankaran, ZETA co-founder and current director of marketing and communications.

“Our investors said that ZETA was the most game-changing company in its portfolio,” she recalled.

A great deal of waste in the building industry had fed and led to the housing bubble, according to Sankaran, and it was a trend that ZETA had seen coming. Thus, its research-and-development team had been studying the construction industry’s methods and uncovered ways to design and build with fewer delays and less material waste for the mass market.

This R&D outcome propelled ZETA’s current business model for eco-friendly, modular construction in the urban cores and surrounding areas, Sankaran said.

RIP, suburban McMansions?

Maybe. Either way, building modular structures means that ZETA workers assemble commercial and residential buildings inside a 91,000-square-foot factory at 20 work stations at McClellan—from floor framing to roof subassembly to shipping. The company arrived there in October 2009.

Foundations are built at project sites, but workers at McClellan build 80 to 90 percent of the modular structures at ZETA headquarters for delivery.

Modular production saves labor time. As good capitalists and Marxists across the social-class divide well know, labor time creates wealth.

ZETA’s “parallel” work processes can shave up to 70 percent off construction time vs. “sequential” construction methods at a standard on-site building project, according to Sankaran. That time savings can translate to up to a 20 percent lower project cost, compared with on-site building expenses.

Also, ZETA cuts its factory production waste by about 90 percent, compared with that at a typical building site. For instance, the company reuses and recycles drywall, paint and wood scraps instead of discarding such materials.

Sankaran says that business has been growing but, however, declined to give year-over-year revenue figures to SN&R. (ZETA is a privately held company and not legally obligated to disclose its finances.) Black Coral Capital invested $5 million in ZETA in July 2010, bringing its market capitalization to $10 million.

On the local front, ZETA recently broke ground in Stockton on 22 multifamily, three-bedroom, two-bath homes, dubbed the Tierra del Sol project. Each home has “passive” solar design, plus high-efficiency lights and water heaters. ZETA is working on this project with Visionary Home Builders of California, San Joaquin County, the federal Department of Energy and ConSol.

ZETA is also providing some down-payment assistance to its 55-person, nonunion workforce at McClellan to buy Tierra del Sol homes. However, 90 percent of them live in the Sacramento region and don’t want to move, Sankaran explained.

ZETA also builds schools and small commercial buildings. In July 2010, the company delivered two kindergarten classrooms, a central administration office building and multipurpose room to the Davis Waldorf School.

“We are a very green-conscious school and valued this option as being consistent with our larger socially responsible goals,” said Kelly Brewer, Davis Waldorf’s administrator.

ZETA is also building two weight rooms for the San Juan Unified School District in Carmichael, an unincorporated neighborhood in Sacramento County.

The company is looking to expand its green-jobs workforce fourfold to 200 workers in two to three years across the country, according to Sankaran.

“We’re the traditional startup model,” she said. “Our goal is not only to have a factory at McClellan but to expand nationally.”

To view thntire article click on this link: www.newsreview.com

Portable Classrooms

Posted on

Recently, modular buildings are becoming very popular on school grounds across the nation. Many schools have invested in using portable classrooms instead of building additions onto schools.

There are so many benefits using portable classrooms rather than building additions. One of the main reasons is the speed and ease with which modular buildings are set up. Additions can take months at a time to complete but modular building units can be delivered and set in only a few days. Individual units can be added or deleted at any time, unlike additions that cannot be torn down.

The use of modular buildings as portable classrooms is also benefiting as the student population of the school rises or declines. If a new school is built and there is a decrease in student population, portable classrooms can be removed. In terms of spacial limits, modular classrooms are a great way to build onto schools without using as much space.

Using portable classrooms saves money for the county and construction costs are significantly lower compared to traditional design-bid structures. It’s a great way for all schools being that schools are constantly looking for cost benefiting inventions! Single and multi-story portable classrooms are available as well.

Another benefit for using portable classrooms is the various styles and sizes offered. There is a large amount of flexibility offered in the design selections!

 

 

Renovation 2nd Story Addition: Siding

Posted on Updated on

Siding is complete on the addition in Carroll County, MD!

The siding on the house is CertainTeed Carolina Beaded 6.5″ (Color: Natural Clay) with Azec trim board. Carolina Beaded has a distinct “V” groove and rounded bead. It is a brushed finished, low gloss color,  maintenance free and never needs painting! This siding includes a Post-formed lock that provides secure installation. Carolina Beaded has a Class 1(A) fire rating and a lifetime limited warranty!

Azec trim has sealed edges on all four sides and is known for having the tightest board tolerance in the industry! It is available in trim, sheets, cornerboards, and beadboard. Azec trim is impervious to moisture and insects.

For more information on CertainTeed Carolina Beaded siding, visit: www.CertainTeed.com

For more information on Azec Trim, visit: www.Azek.com